
## **Conocimientos Previos** A = bh, donde b = base y h = alturaÁrea de un paralelogramo $A = \frac{1}{2}(bh)$ , donde b = base y h = alturaÁrea de un triángulo $A = \frac{1}{2}(a + b)h$ , donde ayb = lados paralelos yh = alturaÁrea de un trapecio $A = \pi r^2$ , donde r = radioÁrea de un círculo $C = 2\pi r$ , donde r = radioCircunferencia de un círculo V = lwh, donde l = longitud, w = ancho y h = alturaVolumen de un ortoedro $V = \pi r^2 h$ , donde r = radio y h = alturaVolumen de un cilindro V = Ah, donde A =área de la sección transversal y h =altura Volumen de un prisma Área de la superficie lateral de $A=2\pi rh$ , donde r=radio y h=alturaun cilindro $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ Distancia que hay entre dos puntos $(x_1, y_1) y (x_2, y_2)$ Coordenadas del punto medio de un segmento de recta con $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ extremos: $(x_1, y_1) y (x_2, y_2)$ 1. Aritmética y Álgebra n – ésimo término de una $u_n = u_1 + (n-1)d$ progresión aritmética $S_n = \frac{n}{2} (2u_1 + (n-1)d)$ , $S_n = \frac{n}{2} (u_1 + u_n)$ Suma de los n primeros términos de una progresión n – ésimo término de una progresión geométrica $S_n = \frac{u_1(r^n - 1)}{r - 1} = \frac{u_1(1 - r^n)}{1 - r}$ , $r \neq 1$ Suma de los n primeros términos de una progresión geométrica Suma de los infinitos términos $S_{\infty} = \frac{u_1}{1 - r}, |r| < 1$ de una progresión geométrica $FV = PV \cdot \left(1 + \frac{r}{100k}\right)^{kn}$ , donde $FV = valor\ futuro$ , $PV = valor\ presente$ , Interés compuesto $k = n^{\circ}$ de períodos de composición de interés que hay en 1 año, r% = tipo de interés nominal anualPotencias y logaritmos $a^x = b \Leftrightarrow x = log_b$ , donde a > 0, b > 0, $a \ne 1$ $\log_a xy = \log_a x + \log_a y$ $\log_a \frac{x}{y} = \log_a x - \log_a y$ $\log_{a} x^{m} = m \cdot \log_{a} x$ $\log_a x = \frac{\log_b x}{\log_b a}$ $(a + b)^n = a^n + {}^nC_1 a^{n-1}b + \dots + {}^nC_n a^{n-r}b^r + \dots + b^n$ Teorema del binomio ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

| 2. Funciones                                                               |                                                                                                  | Sucesos compuestos                                              |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Ecuaciones de la recta                                                     | $y = mx + n$ , $ax + by + c = 0$ , $y - y_1 = m(x - x_1)$                                        | Sucesos incompatibles                                           |
| Fórmula de la pendiente                                                    | $m = \frac{y_2 - y_1}{x_2 - x_1}$                                                                | Probabilidad condicionada                                       |
| Eje de simetría del gráfico de<br>una función cuadrática                   | $f(x) = ax^2 + bx + c$ , el eje de simetría es $x = -\frac{b}{2a}$                               | Sucesos Independientes                                          |
| Soluciones de una ecuación cuadrática                                      | $ax^{2} + bx = 0$ , $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ , $a \neq 0$                      | Valor esperado de una variable<br>aleatoria <i>X</i>            |
| Discriminante                                                              | $\Delta = b^2 - 4ac$                                                                             | Distribución Binomial                                           |
|                                                                            | $a^x = e^{xln(a)}$ , $log_a a^x = x = a^{log_a x}$ donde $a, x > 0$ , $a \ne 1$                  | Media                                                           |
|                                                                            |                                                                                                  | Varianza                                                        |
| 3. Geometría y trigonometría                                               |                                                                                                  | Variable normal tipificada o estandarizada                      |
| Distancia que hay entre dos puntos $(x_1, y_1, z_1)$ y $(x_2, y_2, z_2)$   | $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$                                       |                                                                 |
| Coordenadas del punto medio                                                | $(x_1+x_2, y_1+y_2, z_1+z_2)$                                                                    | 5. Análisis                                                     |
| de un segmento de recta con extremos $(x_1, y_1, z_1)$ y $(x_2, y_2, z_2)$ | $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$                           | Derivada de $x^n$                                               |
| Volumen de una pirámide recta                                              | $V=rac{1}{3}Ah$ , donde $A=$ área de la base y $h=$ altura                                      | Integral de $x^n$                                               |
| Volumen de un cono recto                                                   | $V=rac{1}{3}\pi r^2 h$ , donde $r=radio$ y $h=altura$                                           | Área entre una curva $y = f(x)$ y el eje $x$ , donde $f(x) > 0$ |
| Área de la superficie lateral de<br>un cono                                | $A=\pi r l$ , donde $r=radio$ y $l=generatriz$                                                   | Derivada de sen(x)                                              |
| Volumen de una esfera                                                      | $V=rac{4}{3}r^3$ , donde $r=radio$                                                              | Derivada de $cos(x)$                                            |
| Área de la superficie de una esfera                                        | $A = 4\pi r^2$ , donde $r = radio$                                                               | Derivada de $e^x$                                               |
| Teorema del seno                                                           | $\frac{a}{sen(A)} = \frac{b}{sen(B)} = \frac{c}{sen(C)}$                                         | Derivada de $ln(x)$                                             |
| Teorema del coseno                                                         | $c^{2} = a^{2} + b^{2} - 2ab \cdot cos(C), cos(C) = \frac{a^{2} + b^{2} - c^{2}}{2ab}$           | Regla de la cadena                                              |
| Área de un triángulo                                                       | $A = \frac{1}{2}ab \cdot sen(C)$                                                                 | Regla del producto                                              |
| Longitud de un arco                                                        | $l=r\theta$ , $donde\ r=radio\ y\ \theta=$ ángulo en $radianes$                                  | Regla del cociente                                              |
| Área de un sector circular                                                 | $A = \frac{1}{2}r^2\theta$ , donde $r = radio$ y $\theta = ángulo$ en radianes                   |                                                                 |
| Relación fundamental para $tan(\theta)$                                    | $tan(\theta) = \frac{sen(\theta)}{cos(\theta)}$                                                  | Aceleración                                                     |
| Identidad Pitagórica                                                       | $\cos^2(\theta) + \sin^2(\theta) = 1$                                                            | Distancia recorrida entre $t_1^{}$ y $t_2^{}$                   |
| Fórmulas del ángulo doble                                                  | $sen(2\theta) = 2sen(\theta)cos(\theta)$                                                         | Distancia recorrida entre $t_1$ y $t_2$                         |
|                                                                            | $cos(2\theta) = cos^{2}(\theta) - sen^{2}(\theta) = 2cos^{2}(\theta) - 1 = 1 - 2sen^{2}(\theta)$ |                                                                 |
| 4. Estadística y probabilidad                                              |                                                                                                  | Integrales inmediatas                                           |
| Rango Intercuartil                                                         | $RIC = Q_3 - Q_1$                                                                                |                                                                 |
| Media $(x)$ de un conjunto de datos                                        | $\overline{x} = \frac{\sum\limits_{i=1}^k f_i x_i}{n}$ , donde $n = \sum\limits_{i=1}^k f_i$     |                                                                 |
| Probabilidad de un suceso A                                                | $P(A) = \frac{n(A)}{n(U)}$                                                                       | Área de una región que está                                     |
| Sucesos complementarios                                                    | P(A) + P(A') = 1                                                                                 | delimitada por una curva y por el<br>eje <i>x</i>               |
|                                                                            |                                                                                                  |                                                                 |



 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

 $P(A \cup B) = P(A) + P(B)$ 

 $P(A \cap B) = P(A) \cdot P(B)$ 

 $E(X) = \sum x \cdot P(X = x)$ 

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$ 

 $X \sim B(n, p)$ 

E(X) = np

 $z = \frac{x - \mu}{\sigma}$ 

 $A = \int\limits_{-\infty}^{b} y \, dx$ 

V(X) = np(1-p)

 $f(x) = x^n \rightarrow f'(x) = nx^{n-1}$ 

 $\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$ 

 $f(x) = sen(x) \rightarrow f'(x) = cos(x)$ 

 $f(x) = cos(x) \rightarrow f'(x) = -sen(x)$ 

 $f(x) = e^x \rightarrow f'(x) = e^x$ 

 $f(x) = ln(x) \to f'(x) = \frac{1}{x}$ 

 $y = uv \rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$ 

 $y = \frac{u}{v} \rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$ 

 $a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$ 

distancia =  $\int |v(t)|dt$ 

 $\int \frac{1}{x} dx = \ln|x| + C$ 

 $\int e^x dx = e^x + C$ 

 $A = \int |y| dx$ 

 $desplazamiento = \int v(t)dt$ 

 $\int sen(x) dx = -cos(x) + C$ 

 $\int \cos(x) \, dx = \sin(x) + C$